Indian Statistical Institute, Bangalore

M. Math First Year

First Semester - Measure Theoretic Probability

Final Exam Maximum marks: 50 Date: November 11, 2019 Duration: 3 hours

Section I: Answer any four and each question carries 6 Marks

1. (a) Prove that a set of outer measure zero is Lebesgue measurable (Marks: 3).

(b) Prove that an union of two Lebesgue measurable sets is Lebesgue measurable.

- 2. Let (X, \mathcal{A}, μ) be a finite measure space and (f_n) be a sequence of measurable functions converging everywhere on X. Prove that for each $\epsilon > 0$ there is a $A \in \mathcal{A}$ such that $\mu(A) < \epsilon$ and (f_n) converges uniformly on $X \setminus A$.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that f_x is Borel measurable and f_y is continuous. Prove that f is measurable.
- 4. Prove that a sequence (X_n) of random variables converge a.e. to 0 if and only if $P(|X_n| > \epsilon \text{ i.o.}) = 0$ for all $\epsilon > 0$.
- 5. Let X be a random variable. Is there a m such that $P(X \le m) \ge \frac{1}{2}$ and $P(X \ge m) \ge \frac{1}{2}$? Is it unique? Justify your answer.
- 6. Prove the Levy-Cramer continuity Theorem.

Section II: Answer any two and each question carries 13 Marks

(a) If μ is a Borel measure on R such that μ([0,1]) = 1 and μ(x + B) = μ(B) for all x ∈ X, all Borel sets B in R, prove that μ is the Lebesgue measure.
 (b) Let μ and ν be two σ-finite measures on X. Prove that ν = ν₀ + ν₁ such

(b) Let μ and ν be two δ -inite measures on Λ . Prove that $\nu = \nu_0 + \nu_1$ such that $\nu_0 \ll \mu$ and $\nu_1 \perp \mu$ (Marks: $\hat{\gamma}$).

- 2. (a) Let X, X_n be random variables. Prove that X_n → X almost everywhere if and only if lim_m P(|X_n − X| ≤ ε for all n ≥ m) = 1 for any ε > 0 (Marks: 7).
 (b) For any sequence (X_n) of random variables, X_n → +∞ if and only if P(X_n < M i.o.) = 0 for any M > 0.
- 3. (a) A sequence of probability measures (μ_n) converges weakly to a probability measure μ if and only if limμ_n(C) ≤ μ(C) for any closed set C of ℝ (Marks: γ).
 (b) If μ and λ are probability measures on ℝ such that μ * λ = μ, find λ.